The stereospecificity of the oxidative reaction in the alcoholdehydrogenase-catalyzed dismutation of aldehydes

Highly purified crystalline horse-liver alcohol dehydrogenase catalyzes the dismutation of formaldehyde and other aldehydes to the corresponding acid and alcohol^{1,2}. Evidence has been presented that alcohol dehydrogenase is the only enzyme required for this dismutation². The following reaction sequence is involved:

$$\begin{array}{c} \text{CH}_2\text{O} + \text{DPN}^+ + \text{H}_2\text{O} \longrightarrow \text{HCOOH} + \text{DPNH} + \text{H}^+ \\ \text{CH}_2\text{O} + \text{DPNH} + \text{H}^+ \longrightarrow \text{CH}_3\text{OH} + \text{DPN}^+ \end{array} \tag{1}$$

$$2CH_{9}O + H_{9}O \longrightarrow CH_{3}OH + HCOOH$$
 (3)

The exclusive utilization of only one side of the nicotinamide ring of DPN+ by alcohol dehydrogenase during the oxidation of alcohols and reduction of aldehydes has been well established3. It therefore appeared of interest to determine whether reaction (1), the oxidation of an aldehyde, shows the same stereospecificity as reaction (2). If reactions (1) and (2) utilize the same side of the nicotinamide ring, the dismutation of an aldehyde containing deuterium on C-I will not introduce deuterium into DPN+, since the deuterium which the DPN+ acquires in reaction (r) will be removed in reaction (2). On the other hand, if the two reactions show opposite stereospecificities, then the dismutation of the C-I deutero-aldehyde will result in introduction of deuterium into DPN+.

We carried out the dismutation of CH₃CDO in the presence of DPN⁺ and alcohol dehydrogenase. CH₃CDO was synthesized according to published procedures⁴. Alcohol dehydrogenase was purchased from Worthington Biochemical Company. The dismutation reaction was carried out as described previously². The following concentrations of reactants were used: DPN+, $7.9 \cdot 10^{-4} M$; enzyme, $6 \cdot 10^{-7} M$; acetaldehyde, $7.2 \cdot 10^{-8}$ M. The total volume of the reaction mixture was 20 ml. In order to maintain a nearly constant reaction rate an additional 80 µmoles of acetaldehyde were added after 25 min. Under these conditions, the rate of acid formation was maintained between I.I and I.5 μ moles/min. The reaction was allowed to proceed for 60 min; 78.4 μ moles of acid were produced during this time. The nicotinamide portion of the DPN+ was then isolated⁵ and its deuterium content determined. No deuterium above the naturally occurring amount could be detected. These results, therefore, indicated that both the alcohol-dehydrogenase-catalyzed oxidation (1) and reduction (2) utilize the same side of the nicotinamide ring of DPN+.

This work was supported by a grant from the National Institutes of Health, U.S. Public Health Service.

The Department of Chemistry, The Ohio State University, ROBERT H. ABELES Columbus 10, Ohio (U.S.A.) ARTHUR M. BROWNSTEIN

Abbreviation: DPN+, DPNH, oxidized and reduced diphosphopyridine nucleotide.

Received August 1st, 1960

¹ L. P. KENDAL AND A. N. RAMANATHAN, Biochem. J., 52 (1952) 430.

² R. H. ABELES AND H. A. LEE, J. Biol. Chem., 235 (1960) 1499.

³ B. Vennesland and F. H. Westheimer, A Symposium on The Mechanism of Enzyme Action, Johns Hopkins Press, Baltimore, Maryland, 1954.

F. A. Loewus, F. H. Westheimer and B. Vennesland, J. Am. Chem. Soc., 75 (1953) 5018.

⁵ B. Vennesland, A. Marcus and J. R. Stern, J. Biol. Chem., 233 (1958) 722.